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Phase diagram of three-leg spin ladder
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Abstract. The spin-12 spin ladder with single-ion anisotropy and bond alternation is analysed
using the bosonization technique and other methods. Our argument is mainly devoted to the
case of three legs. Combining the renormalization group analysis with the results of the strong-
coupling limits, we predict that the translationally invariant model is gapless regardless of the
single-ion anisotropy and described by thec = 1 conformal field theory (CFT). It is also argued
that the response to the bond alternation is quite different according to the sign of the interchain
coupling.

1. Introduction

The problem of coupled chains (of spins or electrons) has been a subject of study for years.
Recently, it has found renewed interest; the Heisenberg spin ladders are considered to be the
model for singlet superconductivity [1] (see also [2] and references cited therein) and the
coupled electronic chains are interesting in view of extending the Luttinger liquid concepts
to two dimensions [3]. One of the most striking features of this problem would be that
there exist ladder-like materials such as Srn−1Cun+1O2n [4, 5].

On the other hand, these models provide a good starting point for the weak-coupling
approach to Haldane gap systems [6–9] and heavy-fermion systems [10, 11]. In the present
paper, we investigate theS = 1

2 Heisenberg spin ladder with three legs (i.e. three coupled
chains, see figure 1)

H =
∑
i=1

nleg∑
α=1

Sα
2i−1·Sα

2i + J ′ ∑
j=1

nleg∑
α=1

Sα
2j ·Sα

2j+1

+JK

∑
i=1

nleg−1∑
α=1

Sα
i ·Sα+1

i + D
∑
k=1

( nleg∑
α=1

S
α,z
k

)2

(nleg = 3) (1)

where nleg chains (labelled byα) are coupled to the neighbouring ones through theJK-
interaction. We have introduced bond alternationJ ′ in order to consider the difference
in the response against the alternation between the cases ofS = (integer) and S =
(half-odd integer). As usual, the fourth term (D-term, hereafter) introduces the effect of the
single-ion anisotropy.

Quite recently, the behaviour of the model (1) withnleg = 2 has become clear [9–13];
the transition to the ‘Haldane phase’ occurs at(JK = 0, J ′ = 0) and the gap1 opens as
1 ∼ |JK |(ln |JK |)1/2.
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Figure 1. Three-leg ladders; (a) planer ladder and (b) cylindrical ladder. The choice of the
topology affects the strong-coupling limit.

However, not much is known about the casenleg = 3 [14]. There is a (strictly speaking,
not complete but very plausible) proof [15] stating that the homogeneousS = 1

2 Heisenberg
ladder with an odd number of legs has gapless excitations†. This does not depend on the
strength of the interchain couplingJK. Thus we may expect that the system is gapless all
along the lineJ ′ = 1. Nevertheless, the universality class of this system is not known. In
particular, the universality class on the ferromagnetic sideJK < 0 is interesting in relation
to the Haldane conjecture [16, 17]. That is, the system reduces to theS = 3

2 Heisenberg
chain in the limit−JK → ∞. In this sense, our model may be used as a weak-coupling
approach to the problem of higher-spin chains.

The model (1) is also interesting in the context of the dimerization transition. Affleck
and Haldane [18] and later Guoet al [19] conjectured that the features of the dimerization
transition are different forS = integer andS = half-odd integer. The main purpose of
the present paper is to obtain a qualitative phase diagram of the model and to clarify the
difference between the casenleg = 2 andnleg = 3.

The Abelian bosonization technique [20] is usually used in the analysis of such coupled
chains. However, if we use the Abelian bosonization starting from the Jordan–Wigner
fermionization, we have to deal with two types of interactions; one comes from the
(intrachain) exchange interaction along thez-axis and the other from theinterchaincoupling.
Furthermore, for special choices of the interactions, novel criticalities appear [21] which
cannot be described by a naive assembly of bosons.

Instead, we develop a different type of bosonization, which manifestly preserve the
SU(2) symmetry and takes into account that only the total spin is well defined in the
strong-coupling(|JK | � 1) limit.

We construct the present paper as follows. In section 2, we investigate the strong-
coupling limits (|JK | � 1 or D � 1), where the problem is much easier to tackle, and we
derive the effective Hamiltonian to show that the system reduces to theS = 1

2 chain in
many cases.

The bosonization analysis is developed in section 3. In the first part, we perform a naive
perturbative renormalization after applying non-Abelian bosonization for the individual

† This ‘theorem’ is readily extended to include the case of the spin-S XXZ-ladder with 2S = odd,nleg = odd.
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chains, and extract several facts from the results. Then, we further rewrite the model
in terms of the effective action of the spin sector, which is considered to be suitable for the
investigation of the strong-coupling region, and the residual degrees of freedom. This is
carried out by exploiting the coset construction̂SU(2)1 × ŜU(2)1 × ŜU(2)1/ŜU(2)3. The
resulting model is given by the higher-level Wess–Zumino–Witten (WZW) conformal field
theory (CFT) together with several interactions and, what is important, it is written only by
the total spin.

The renormalization group analysis for this model is given in section 4. Combining it
with the semiclassical argument, we discuss the nature of the phases. Several quantities such
as correlation functions and susceptibility are calculated as well. Although sections 3 and 4
are the main part of the present paper, readers who are unfamiliar with the field-theoretical
argument will skip section 3 and the first half of section 4.

A simple variational argument of the phase diagram is presented in section 5, where the
existence of the dimerization transition is discussed.

Our main results are summarized in the last section. The difference between the cases
with JK > 0 andJK < 0 is discussed in conjunction with the Berry phase. In the appendix,
we give ‘minimal’ information about the coset construction used in the text.

2. Strong-coupling limits

The model (1) reduces to more familiar models in the strong-coupling limits|JK | � 1 or
D � 1. This will help us to obtain a global outlook for the phase diagram.

To begin with, we consider the caseJK > 0 (we call it theAF caseor AF-sidehereafter).
For clarity, we first investigate the case of a planar ladder, i.e. a ladder with open ends in
the vertical direction (see figure 1(a)). The cylindrical case (figure 1(b)) is convenient to
the application of the bosonization method and is treated afterwards. In the limitJK → ∞,
the system reduces to the assembly of the decoupled rungs (composed of three sites) which
is easily diagonalized. The ground state is given by a tensor product of the doublet (S = 1

2),
i.e.

|s3
1〉 ⊗ |s3

2〉 ⊗ · · · ⊗ |s3
L〉 (2)

where the state of theith rung |s3
i 〉 is either∣∣∣∣1

2

〉
= 1√

6
(2| ↑↓↑〉 − | ↓↑↑〉 − | ↑↑↓〉)

or

∣∣∣∣−1

2

〉
= 1√

6
(−2| ↓↑↓〉 + | ↑↓↓〉 + | ↓↓↑〉) .

Therefore, the ground state forJK → ∞ is 2L-fold degenerate (whereL is a length of the
ladder).

For a large but finite value ofJK, we can include the effect of theintrachain interaction
by the first order degenerate perturbation [22]. The result is summarized by the following
effective Hamiltonian:

HAF
eff =

∑
i=1

s2i−1·s2i + J ′ ∑
j=1

s2j ·s2j+1 (3)

where{si} act as spin-12 representations on each rung. Note that theD-term reduces to a
trivial constant and can be dropped in this case. The range of validity for this effective
Hamiltonian is restricted to the regionJK � 1, J ′. This is nothing but the alternatingS = 1

2
Heisenberg chain, whose phase diagram is fairly well studied [23, 24]; there is a gapless



3562 K Totsuka and M Suzuki

phase only on the pointJ ′ = 1 and the ground state is dimerized forJ ′ 6= 1. According
to Reigrotzkiet al [22], an extra overall prefactorJeff ≈ 0.68 is necessary forHeff around
JK ' 1. Of course this result is consistent with Affleck’s theorem [15] stating the existence
of gapless excitations on theJ ′ = 1 line.

The situation is slightly more complicated in the case of a cylindrical ladder. Because
the sublattices cannot be defined consistently for theAF case, the Marshall–Lieb–Mattis
theorem [25] does not hold and the uniqueness of the (finite) ground state is no longer
guaranteed. In fact, the ground state of a three-site ring is 2× 2-fold degenerate—one
comes from the eigenvalues

∑3
i=1 Si,z

r = ± 1
2 and the other from those of the vertical

momentaP ⊥
r = ±2π/3. This degeneracy is resolved after switching on the first-order

perturbation. Correspondingly, we obtain, after some algebra, the following Hamiltonian
(cf equation (3)):

HAF′
eff =

∑
i=1

h2i−1,2i (s2i−1, s2i ) + J ′ ∑
j=1

h2j,2j+1(s2j , s2j+1) (4)

where the local Hamiltonianhi,i+1 takes the following factorized form:

hi,i+1(si , si+1) = 1
3si·si+1 ⊗ [

1 + 2(σ x
i σ x

i+1 + σ
y

i σ
y

i+1)
]
.

The Pauli matrices{σa
i } act on the two-dimensional module consisting ofP ⊥

r = ±2π/3, i.e.
P ⊥

r = (2π/3)σ z
r (r = 1, . . . , L). This is still a complicated problem of two coupled spin-1

2
chains; one is concerning the spin (SU(2)) degrees of freedom and the other originates
from the 2L-fold degeneracy with respect toP ⊥

r . In spite of this complexity, we adopt the
cylindrical ladder for technical reasons in sections 3 and 4.

The caseJK < 0 (the ferromagnetic case) is less trivial. A similar argument leads to
the following effective Hamiltonian:

HF
eff = 1

3

∑
i=1

S̃2i−1·S̃2i + 1
3J ′ ∑

j=1

S̃2j ·S̃2j+1 + D
∑
k=1

(
S̃z

k

)2
. (5)

The operators{S̃i} are defined in the space of the spin-3
2 representations on each rung. Note

that the topology of the ladder (planer or cylindrical) is irrelevant in this case. Hence we
can safely use the cylindrical ladder instead of the planer one forJK < 0.

To study the system (5) is less trivial because of the lack of exact results. We have to
keep in mind the difference between theAF (JK � 1) case and the ferromagnetic (−JK � 1)
case; the former is analogous to the Kondo screening, while the latter is related to the
problem of the higher-S model—Haldane’s conjecture [16, 17].

Finally, we consider the case where the single-ion anisotropyD is large. For infinitely
large D, the system reduces again to a decoupled one; states with

∑3
i=1 Si,z

r = ± 1
2

(r = 1, . . . , L) are the ground states. We introduce the leg and rung interactions as
perturbations to these degenerate ground states. For simplicity, it is convenient to consider
the case|JK | � 1 and to take simultaneous eigenstates ofD(S

1,z
i + S

2,z
i + S

3,z
i )2 and

JK(S1
i ·S2

i + S2
i ·S3

i + S3
i ·S1

i ) (in fact, the effect of theD-term can be absorbed into the
anisotropy of the interchain coupling for a cylindrical three-leg ladder. (Note that this is
not the case fornleg > 4.)

When JK < 0, the S1, S2, S3 spins are coupled ferromagnetically to form a spin-3
2

representation. For large enoughD, only two states̃Sz = S1,z + S2,z + S3,z = ± 1
2 are

allowed among the quartet. Since these two states are symmetric inS1, S2, S3, we readily
see that the effective Hamiltonian for the large-D case is given by the followingS = 1

2
Heisenberg chain

Hlarge−D

eff (JK < 0) = 4
3

∑
i=1

(
s̃x

2i−1s̃
x
2i + s̃

y

2i−1s̃
y

2i + 1
4 s̃z

2i−1s̃
z
2i

)



Phase diagram of three-leg spin ladder 3563

+ 4
3J ′ ∑

j=1

(
s̃x

2j s̃
x
2j+1 + s̃

y

2j s̃
y

2j+1 + 1
4 s̃z

2j s̃
z
2j+1

)
. (6)

The spin operators{s̃i} act on the effectiveS = 1
2 representation. ForJK > 0, a similar

argument leads to the conclusion

Hlarge−D

eff (JK > 0) = HAF′
eff . (7)

It is a great contrast to the case of the two-leg ladder that the large-D region for the ladder
with three legs (an odd number of legs, in general) is also described by a massless model.

We can generalize the well known argument [26, 27, 15] to show the following statement:
if 2S = odd andnleg = odd, the nleg-leg spin-S XXZ ladder (−1 < Jz/J xy 6 1,
D = arbitrary) has either (i) a unique ground state with gapless excitations, or (ii) degenerate
ground states. The proof is analogous to the one given in [27] and we do not repeat it here.
The above rigorous statement makes it plausible that the model (1) is critical (gapless) all
over theJ ′ = 1 plane.

3. Non-Abelian bosonization for three-leg ladder

In this section, we perform the non-Abelian bosonization [28]. The Abelian bosonization is
a standard technique in the study of the one-dimensional quantum systems and it was used
in analysing the coupled spin chains by several authors [6, 29]. In this method, the Jordan–
Wigner fermions, which are obtained by transforming the original spin-chain problem, are
approximated by the continuum Dirac fermions and then bosonized to the interacting bosons.
It is important to note that the interactions come both from the exchange interaction along
the z-axis and from the interchain coupling. Hence the situation is much more complicated
than in a single spin chain.

On the other hand, the non-Abelian version of the bosonization starts from a completely
different point; we bosonize fermions which transform as a multiplet under the action of a
groupG preserving theG-symmetry manifestly. For example, a singleS = 1

2 Heisenberg
chain is expressed by the level-1SU(2) Wess–Zumino–Witten (WZW) model describing the
spin sector of two copies of the Dirac fermion, while, in the Abelian bosonization, the same
thing is realized in terms of a single free boson with a non-trivial compactification radius
(or, the Luttinger liquid parameter). In mathematical language, the latter corresponds to the
Frenkel–Kac construction [30] of the former. Therefore, we are free to choose these two
methods of description in the case of asingle chain.

For coupled chains, however, the situation is different. In the Abelian-bosonization
treatment of ladder-type models [6, 8], we take an appropriate linear combination of the
(interacting) bosons (nleg bosons for thenleg-leg case) to obtain an effective bosonized
action of the spin sector. In spite of the simplicity of this method, it has a disadvantage that
theSU(2)-symmetry of the problem is not manifest. Furthermore, it is known [21] that the
coupled-chain model with special interactions is described by the higher levelWZW model
which cannot be realized by a single free boson. Therefore, it is important to look for the
method of bosonizing the ladder model without spoiling the originalSU(2) symmetry.

In the first part of this section, we calculate the renormalization groupβ-function naively
starting fromnleg decoupledS = 1

2 Heisenberg chains.
It is fairly well known that the singleS = 1

2 Heisenberg model is expressed by the
bosonic level-1SU(2) WZW model in the low-energy limit [18, 31]. It is supported by
the finite-size spectrum derived from the exact solution [32] and the coincidence of the
exactS-matrices [33, 34]. Similarly to the case of the Abelian bosonization, the low-energy
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effective Hamiltonian is expressed in terms of bilinears of theSU(2) currents [35] (the
non-Abelian analogue of the Tomonaga Hamiltonian)

Hα = 2πvF

∫ L

0
dx

1

k + 2

[ pp Jα
L·Jα

L
pp + pp Jα

R·Jα
R

pp ] (α = 1, 2, 3) (8)

where the parameterk is called thelevel of the Kac–Moody algebras andvF = π/2. We
have defined the currents so that the spatial integration yields the total spinStot(= JL

0 +JR
0 ):

JL/R(x±) = 1

L

∑
n∈Z

J L/R
n e−i(2π/L)nx±

.

In the following, we consider the casek = 1 andk = 3.
We takenleg(= 3) copies of theWZW model, and then introduce both the interchain

coupling and the bond alternation to these continuum models. The spin operator on each
chain is bosonized to be given by [18]

Sα
n ≈ [

Jα
L + Jα

R

] + constant× (−1)nTr(gασ) . (9)

The 2× 2 matrix gα is the fundamental field of the level-1SU(2) WZW model for theαth
chain andσ denotes the Pauli matrices. The trace is taken over the matrix indices. Because
of the hermiticity ofSα

n , the constant appearing in (9) is purely imaginary. The continuum
interactions corresponding to the interchain coupling are obtained as follows: first we rewrite
the interchain coupling

∑3
α=1 Sα

n ·Sα+1
n using (9), and then drop rapidly varying terms. The

bond alternation is rewritten by calculating the operator-product expansionS(x)·S(x ′). As
a result, similarly to the two-leg case [13], we are left with the following ten interactions:

λ1(J
1
L·J1

R + J2
L·J2

R + J3
L·J3

R) intrachain

λ2(J
1
L·J2

R + J2
L·J1

R + J2
L·J3

R + J3
L·J2

R + J3
L·J1

R + J1
L·J3

R) interchain-1

λ3
[
Tr(g1σ)·Tr(g2σ) + Tr(g2σ)·Tr(g3σ) + Tr(g3σ)·Tr(g1σ)

]
interchain-2

λ4(Trg1 + Trg2 + Trg3) bond alternation

λ5(Trg1·Trg2 + Trg2·Trg3 + Trg3·Trg1) (10)

λ6(J
1,z
L J

2,z
R + J

2,z
L J

1,z
L + J

2,z
L J

3,z
R + J

3,z
L J

2,z
L + J

3,z
L J

1,z
R + J

1,z
L J

3,z
L )

λ7
[
Tr(g1σ

z)Tr(g2σ
z) + Tr(g2σ

z)Tr(g3σ
z) + Tr(g3σ

z)Tr(g1σ
z)

]
λ8

[
Tr(g1σ)·Tr(g2σ)Trg3 + Tr(g2σ)·Tr(g3σ)Trg1 + Tr(g3σ)·Tr(g1σ)Trg2

]
λ9Trg1Trg2Trg3

λ10
[
Tr(g1σ

z)Tr(g2σ
z)Trg3 + Tr(g2σ

z)Tr(g3σ
z)Trg1 + Tr(g3σ

z)Tr(g1σ
z)Trg2

]
.

Since we use a cylindrical ladder in sections 3 and 4, interactions are always invariant
undergi 7→ gi+1. The interactionsλ5, λ8, λ9 and λ10 have been introduced in order to
guarantee the renormalizability. We have also introduced the last two terms corresponding
to the anisotropic (XXZ-like) interchain interaction. They are important in considering
the D-term perturbation (recall that it can be absorbed in the anisotropy of the interchain
interaction). The initial values are given by

λ
(0)

1 < 0 λ
(0)

2 = JK

(2π)2
λ

(0)

3 ∼ −JK λ
(0)

4 = J ′ − 1 λ
(0)

5 = 0

λ
(0)

6 = 2D

(2π)2
λ

(0)
7 ∼ −D λ

(0)

8 = λ
(0)

9 = λ
(0)

10 = 0 .

(11)

There are several methods to calculate theRG beta-function. Among them, the most
convenient one may be to use the procedure developed by Kosterlitz (see [36] for a detailed
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account). With this method, the calculation of the 1-loop beta-function reduces to the
evaluation of the operator algebra. The operator algebras for theWZW model worked out
in [37] would be helpful in the calculation.

Since similar calculations can be found in the literature [11, 13], we show only the final
results

dλ1

d lnL
= 2πλ2

1 (12)

dλ2

d lnL
= 2πλ2

2 + 2πλ2λ6 (13)

dλ3

d lnL
= λ3 + 4πλ2

3 − πλ1λ3 + 2πλ2λ3 + πλ2λ5 + πλ2λ7 + πλ3λ6 − 4πλ4λ8 (14)

dλ4

d lnL
= 3

2λ4 + 3
2πλ1λ4 − 8πλ4λ5 − 24πλ3λ8 − 8πλ5λ9 − 8πλ7λ8 − 8πλ3λ10 − 8πλ7λ10

(15)
dλ5

d lnL
= λ5 + 3πλ1λ5 + 3πλ2λ3 − 2πλ2

4 − 4πλ2
5 + πλ3λ6 + πλ2λ7 + πλ6λ7 − 4πλ4λ9

(16)
dλ6

d lnL
= −2πλ2λ6 (17)

dλ7

d lnL
= λ7 + 4πλ2

7 − πλ1λ7 − πλ2λ7 − πλ3λ6 + 8πλ3λ7 + πλ5λ6 − 4πλ4λ10 (18)

dλ8

d lnL
= 1

2λ8 − 2πλ3λ4 + 1
2πλ1λ8 + 4πλ2λ8 + πλ2λ9 + πλ6λ8 + πλ2λ10 (19)

dλ9

d lnL
= 1

2λ9 − 6πλ4λ5 + 9πλ2λ8 + 9
2πλ1λ9 + 3πλ6λ8 + 3πλ6λ9 + 3πλ2λ10 + 3πλ6λ10

(20)
dλ10

d lnL
= 1

2λ10 + πλ6λ8 + 1
2πλ1λ10 + πλ2λ10 + 2πλ6λ10 (21)

where L stands for a certain length scale. Although the equations (12)–(21) are rather
complicated to handle, some important facts can be read off from them.

First the solutionλ4(L) = λ8(L) = λ9(L) = λ10(L) = 0 is one of the stable solutions
to the above equations, which implies that the bond alternation is not generated under the
renormalization. The initial valuesλ(0)

6 = 0 andλ
(0)
7 = 0) are also stable, i.e. theSU(2)

symmetry is not distorted under the renormalization. The beta-functions suggest that the
decoupling point(JK, J ′) = (0, 1) is an unstable fixed point, i.e. any small deviation from
it drives the system to other fixed points.

Another important observation is that the beta-functions forλ2 and λ6 are decoupled
from others and of the Kosterlitz–Thouless type [38]. The behaviour of the couplings is well
known; a stable fixed line appears forλ

(0)

2 +λ
(0)

6 < 0 and−|λ(0)

2 +λ
(0)

6 | < λ
(0)

2 < |λ(0)

2 +λ
(0)

6 |.
In terms of the original coupling constants, this condition becomesJK > 0, D < −JK < 0
or JK < 0, D < 0; we expect the strong-coupling flow forD > 0.

If we take into account the strong-coupling results (6) and (7), we expect that theD-
term does not destroy the effectiveSU(2) symmetry for low energies and that the system
is essentially described by the isotropicS = 1

2 Heisenberg chain both on theAF-side and
on the ferromagnetic side.

A remark is in order here about the validity of the above calculation. In the(WZW)3

description, theSU(2) currentsJ i
L, J i

R of each chain are conserved separately and, hence,
so is their spatial integralSi

tot = Si
L+Si

R (i = 1, 2, 3). In other words, the system has a large



3566 K Totsuka and M Suzuki

symmetrySU(2)S1 × SU(2)S2 × SU(2)S3 at the decoupling pointJK = 0. However, when
the interchain interactionJK is not small, this is no longer true; the sumS1

tot + S2
tot + S3

tot
is conserved. TheRG analysis presented above actually indicates the strong-coupling flow.
Therefore, a naive weak-coupling expansion starting from three decoupledWZW models
would be inappropriate and such a description that only the total spin is a good quantum
number is preferable in investigating the strong-coupling region. In the second half of this
section, we look for another way of bosonizing the three-leg ladder.

In fact, theSU(2)S1 ×SU(2)S2 ×SU(2)S3-symmetry at the decoupling point is enlarged
to a larger (infinite-dimensional) symmetrŷSU(2)k=1 × ŜU(2)k=1 × ŜU(2)k=1 in the low-
energy limit. Again, the parameterk denotes the level of the affineSU(2) symmetry. Upon
turning on the interchain coupling, it reduces to the diagonalŜU(2)k=3 corresponding to
the SU(2) symmetry generated by the total spin:J

diag
L/R = J1

L/R + J2
L/R + J3

L/R. Thus it
would be preferable to rewrite the model in terms of the level-3WZW model describing the
spin sector and the remaining degrees of freedom in order to extract the effective action.

To this end, it is important to investigate how the diagonal̂SU(2)k=3 is embedded in
the ŜU(2)k=1 × ŜU(2)k=1 × ŜU(2)k=1 symmetry. In the two-leg case [13], it was given
by the well known coset construction of the IsingCFT [39]. In the present three-leg case,
however, little study has been done for the above embedding. Therefore, first we have to
look for the branching rules for this case.

As was already remarked in [13], the residualCFT has the central chargec =
1 + 1 + 1 − 9

5 = 6
5. In the appendix, we show that thisCFT is given by a member of

the so-calledW3 minimal models [40] whose central charge is given by the formula

c(m) = 2

(
1 − 12

(m + 3)(m + 4)

)
(m = 1, 2, . . .) . (22)

The casem = 2 is relevant to ours. The representation theory of this series ofCFTs was
studied by several authors (see [41] and references cited therein) and the character formulae
are obtained [42]. Using these results, we obtain the following identities:

χ
(k=1)

j=1/2(q)χ
(k=1)

j=0 (q)χ
(k=1)

j=0 (q) = χ
W3
1/10(q)χ

(k=3)

j=1/2(q) + χ
W3
1/2(q)χ

(k=3)

j=3/2(q) (23)

χ
(k=1)

j=1/2(q)χ
(k=1)

j=1/2(q)χ
(k=1)

j=0 (q) = χ
W3
1/10(q)χ

(k=3)

j=1 (q) + χ
W3
1/2(q)χ

(k=3)

j=0 (q) (24)

(see the appendix for the meaning of the notations and the remaining identities). They give
a clue to how to rewrite the interactions in terms of the level-3WZW model and theW3 CFT.

As in [13], the operator-product expansion (OPE) is used to rewrite the interactions
of ŜU(2)1 × ŜU(2)1 × ŜU(2)1—description into that of thêSU(2)3-description. Since
detailed information about theOPEs of the c = 6

5 W3 CFT is lacked, we cannot explicitly
establish the identities. However, on the basis of the symmetry argument and the requirement
that the scaling dimensions should be equal on both sides, we expect that the following
relations hold:

Trg1(z, z̄) + Trg2(z, z̄) + Trg3(z, z̄) = 8
W3
1/10(z, z̄)Trh(z, z̄)

Tr[g1(z, z̄)σ] + Tr[g2(z, z̄)σ] + Tr[g3(z, z̄)σ] = 8
W3
1/10(z, z̄)Tr[h(z, z̄)σ]

Trg1Trg2 + Trg2Trg3 + Trg3Trg1 = 3C
1/2
1/10,1/108

W3
1/2 + 3K

2π
C

1/10
1/10,1/108

W3
1/10Tr8WZW

j=1 (25)

Tr(g1σ)·Tr(g2σ) + Tr(g2σ)·Tr(g3σ) + Tr(g3σ)·Tr(g1σ)

= − 9C
1/2
1/10,1/108

W3
1/2 + 3K

2π
C

1/10
1/10,1/108

W3
1/10Tr8WZW

j=1
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where the constantK is given by

K = π

√
0(1/5)03(3/5)

03(2/5)0(4/5)
' 3.432

and the operatorsh, 8WZW
j=1 , and8WZW

j=3/2 on the right-hand side denotes the spin1
2, 1 and 3

2
primary fields of the level-3SU(2) WZW model, respectively. According to the observation
described in the appendix, theW3 fields are expected to be of the following form:

8
W3
1/10 = φ

(1)

1/10 + φ
(2)

1/10 + φ
(3)

1/10 and 8
W3
1/2 = φ

(1)

1/2 + φ
(2)

1/2 + φ
(3)

1/2 . (26)

The constantsCi
1/10,1/10 are theOPE coefficients for theW3-CFT and are not calculated

explicitly here.
According to (26), theW3-CFT sector contains a relevant (energy-like) operator8

W3
1/2

and it becomes gapped [43] for generic values of(JK, J ′) and that it is decoupled from the
spin (SU(2) ) sector. As in [13], the ‘fused’ spin operator is given by

S1
i + S2

i + S3
i ≈ J

diag
L + J

diag
R + constant(−1)iTrhσ . (27)

However, this is not the whole story. The resulting action for the spin sector

Sspin = Sk=3
WZW + α

∫
d2x Tr8WZW

j=1 + β

∫
d2x Trh + γ

∫
d2x Tr8WZW

j=3/2 (28)

still contains several (relevant) interactions. The physical meaning ofα, β andγ is given
as follows; the coupling constantsα andβ correspond to the interchain interactionJK and
bond alternation, respectively. The last term on right-hand side has been appended as a
counter term. In the two-leg case [13], the caseJK > 0 (JK < 0) corresponds to the high-
(low-) temperature phase of the Ising sector and hence the(Trh)-interaction, which plays
a role of the bond alternation disappears from the effective action forJK > 0. A similar
situation may occur in the present case. Note that this kind of the effective action for
generic spin chains was first conjectured by symmetry argument in [18]. Our derivation
may provides a fast foundation to the treatment in [18].

4. Renormalization group and semiclassical analysis

In the last section, we have derived an effective action (28) for the spin sector. In order
to investigate the low-energy behaviour, we calculate the renormalization group (RG) beta-
function up to the 1-loop and then discuss the qualitative nature of the phases.

The calculation is the same as in section 3 and the final result reads

dα

d lnL
= 6

5α − Kα2 − Kβ2 − 8
3παγ (29)

dβ

d lnL
= 17

10β − 3Kαβ (30)

dγ

d lnL
= 1

2γ − 2παβ (31)

where the constantK is already given in the last section. Reflecting the symmetry of
the equations (12)–(21), they are invariant under(α, β, γ ) → (α, −β, −γ ) and the line
β(L) = 0 is stable.
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Figure 2. The renormalization group flow obtained by the 1-loop calculation for the effective
action in section 4. Note that threenon-trivial fixed points (FP-2, FP-3, FP-3′) appear. They are
connected with the trivial one with massless flows.

The system of equations (29)–(31) has four fixed points:

FP-1 (0, 0, 0) FP-2

(
6

5K
, 0, 0

)
FP-3

(
17

30K
, +β0,

34π

15K
β0

)
FP-3′

(
17

30K
, −β0,

34π

15K
β0

) (32)

where

β0 =
√

323

900K2 + 5440π2
≈ 0.070 88.

The first one (FP-1) corresponds to the point(JK, J ′) = (0, 0) and is unstable. The others
are non-trivial ones. A schematicRG-flow is shown in figure 2. Forα(0) < 0 (JK > 0) and
β(0) = γ (0) = 0, the system flows to the strong-coupling fixed point, which has the low-
energy physics in common with theS = 1

2 Heisenberg chain. The translationally invariant
fixed point FP-2 implies the existence of a massless phase on a half lineJ ′ = 1, JK < 0†.
The fixed pointsFP-3 andFP-3′ are non-translationally invariant and are considered to be the
dimerization transition from the partially-dimerized phase to the dimerized one; exponents
for the dimerization transitions are governed by the three FPs. Moreover, there seems to
exist two different types of the strong-coupling behaviour:α, β = finite, |γ | ↗ ∞ and
|α|, |β|, |γ | ↗ ∞.

However, since the non-trivial fixed points are not close to the trivial one (FP-1)
from which we perform the perturbative renormalization group, we cannot trust our 1-
loop calculationquantitatively. Instead of doing higher-order calculations, we give a
semiclassical argument to support the existence of the above-mentioned phases.

We follow the method first used by Affleck and Haldane [18]. In the sense of the
operator-product expansion, the primary fields of thek = 3 WZW model are expressed as

Tr8j=1 ∼ (Trh)2 Tr8j=3/2 ∼ (Trh)3 + constant× Trh .

† Of course, the existence of massless phases, inversely, does not always imply that theremust be a fixed point
on theα-axis. Away fromFP-1, a non-trivial fixed point, which is outside the(α, β, γ )-space may occur.
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Therefore, it is sufficient to consider the following action:

S = Sk=3WZW + µ

∫
d2x (Trh)2 + ν

∫
d2x Trh + ρ

∫
d2x (Trh)3 + D

∫
d2x (Trhσ z)2 .

(33)

Then, we parametrize the fundamental fieldh using an angular variableφ(x1, x2)

(0 6 φ < 2π ) and a vectorial onêϕ(x1, x2) (|ϕ̂| = 1):

h(x1, x2) = exp

(
i

2
φ(x1, x2)σ·ϕ̂(x1, x2)

)
. (34)

It is easy to check that the unit-vector field transforms as anO(3) vector under the diagonal
SU(2): h 7→ U−1hU (U ∈ SU(2)). The translational symmetry by one site is realized
as the discreteZ2 symmetryh → −h. In the above parametrization, it corresponds to the
operationφ → 2π − φ, ϕ̂ → −ϕ̂.

Substituting (34) into the action (33), we obtain

S[φ, ϕ̂] = 1

8π

∫
d2x

[
(∂σφ)2 + 2(1 − cosφ)(∂σ ϕ̂)2

]
+ 1

8π

∫
d2x 3(φ − sinφ)

[
εαβϕ̂·(∂αϕ̂ × ∂βϕ̂)

]
+

∫
d2x

[
4µ cos2

(
φ

2

)
+ 2ν cos

(
φ

2

)
+ 8ρ cos3

(
φ

2

)]
+D

∫
d2x

(
ϕ̂z

)2
sin2

(
φ

2

)
. (35)

As in [13], we first look for the uniform solutionφmin which minimizes the potential term
(the third line), and then replace theφ-field by it. The resulting effective action (theO(3)

nonlinear sigma model)

Seff[ϕ̂] = g

4π

∫
d2x (∂σ ϕ̂)2 + 1

8π
2top

∫
d2x εαβϕ̂·(∂αϕ̂ × ∂βϕ̂) + D′

∫
d2x

(
ϕ̂z

)2
(36)

gives qualitative information about the phase diagram. The parameters are defined as
g = (1 − cosφmin), 2top = 3(φmin − sinφmin), and D′ = D sin2 (φmin/2). Using the
expressions

JL = 3i

2
h(∂+h−1) and JR = 3i

2
h−1∂−h

the SU(2)-current is rewritten as

J0 = JL + JR = − 3
2(1 − cosφmin)(ϕ̂ × ∂0ϕ̂) . (37)

Note thatJ0 generates theO(3)-symmetry of the aboveSeff[ϕ̂].
In figure 3, we show the semiclassical phase diagram obtained in this way. There are

three regions where the topological angle2top = π (mod 2π): a half planeν = 0, µ > 0
and two planesρ ± aµ + bν = 0 (a ' 0.602, b ' 0.272). In these regions, the system is
expected to be gapless [16, 34] and to flow towards the fixed points of the level-1SU(2)

WZW model. In a major region of the parameter space, the minimum occurs atφ = 0
or 2π and theD-term drops out. The valuesφ = 0, 2π imply that the system dimerizes
(indicated by ‘dimerized’ and ‘dimerized′’ in figure 3), i.e. it breaks the above translational
symmetry. It is worth mentioning that there appearsno translationally-invariantmassive
phase (e.g. the singlet phaseà la Haldane) at least within this treatment; theRG-analysis
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Figure 3. The semiclassical phase diagram for the effective action. The system is predicted to
dimerize in a large part of the(α, β, γ )-space. There exist three planes on which the topological
angle2top = π .

and the semiclassical treatment of [13] suggest that it does exist around theα-axis for the
two-leg case.

In the above derivation of (36), the model seems massive on the line(J ′ = 1, JK > 0)

in contradiction to the rigorous result [15]. This is a shortcoming of our description based
on the level-3WZW model. In order to show that this is not true, we derive the sigma model
by a completely different method. First we assume some kind of short-range order from the
beginning. For example, the short-range Néel order is assumed forJK > 0. Then, following
the standard procedure of mapping the spin-S chain onto the sigma model [44, 45] via the
path integral, we obtain forD = 0

Seff[m] = 1

2g′

∫
d2x

[
1

v
(∂0m)2 − v(∂1m)2

]
+ 2′

top

8π

∫
d2x εµνm·(∂µm × ∂νm)

(|m| = 1) (38)

where the coupling constantg′ and the velocity of ‘light’v for JK > 0 are given by

v2 = 12(aS)2(2 + 2J ′ + 3JK)

6 + 6J ′ + JK

1

2g2
=

√
3S

2(1 + J ′)

√
6 + 6J ′ + JK

2 + 2J ′ + 3JK
.

(39)

For JK < 0, they do not depend onJK. The topological angle is given by†

2′
top =


4πJ ′S
1 + J ′ for JK > 0

4πJ ′(3S)

1 + J ′ for JK < 0
(40)

whereS = 1
2 in our case. Note that this is the same as the one obtained for asingle spin-S

(or 3S) chain [46, 47]. Again, we are interested in such values ofJ ′ that2′
top = π(mod 2π).

For JK > 0, it takesπ(mod 2π) only on the lineJ ′ = 1, as expected. On the other hand,
2′

top takes the valueπ three times forJK < 0. This quite different behaviour is understood
as a consequence of the difference in how the Berry phases of individual spins on each rung
are summed up. Thus, we have obtained from the semiclassical analysis the conclusions

† In deriving Seff, it is important to take into account that the short-rangeferromagneticorder on the individual
rung is presumed forJK < 0.
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consistent with theRG results; the three non-trivial fixed points may be identified with
2top = π planes.

From the above argument, we may expect that the low-energy effective theory for the
regionJ ′ = 1, D = 0 and the dimerization lines is given by the level-1SU(2) WZW model,
which is believed to be equivalent for low energies to theO(3) nonlinear sigma model with
2top = π(mod 2π) [34]. Below we give another argument which supports this expectation.
It is far from rigorous and should be regarded as a possible scenario.

It is well known that the level-3SU(2) WZW model can be described by a product of
Z3-parafermionCFT and c = 1 GaussianCFT [48]; the Gaussian sector corresponds toSz

tot
and theZ3-sector describes the residual degrees of freedom. Using the formulae of [48],
we can show that Tr8j=1 contains the thermal operator of the three-state Potts model which
drives theZ3-sector massive.

If the non-trivial fixed point (FP-2) possesses theSU(2) Kac–Moody symmetry, there
would exist a corresponding current algebra realized by the remaining GaussianCFT. This
theory (c = 1) is the level-1SU(2) WZW model, which corresponds to a special point of
the GaussianCFT.

Assuming the above conclusion, we can estimate the effect of theD-term on the
correlation functions. TheRG analysis of the effect of theD-term has been already
given in the last section. Below we give yet another argument supporting the preceding
conclusion. Contrary to the single-chain case, theD-term is not trivial here, as has been
discussed in section 2. Up to the lowest order, its effect can be included as follows. First,
we rewrite D(S

1,z
i + S

2,z
i + S

3,z
i )2 into a normal-ordered form using (27). In the above

(Gaussian⊕ Z3)-description, the contribution to the Gaussian sector comes from a marginal
operator(J diag,z

L + J
diag,z
R )2. It is well known [49, 50] that another marginal (usually called

‘Umklapp’) operator exists in addition to the above one. TheRG beta-function is easily
calculated in a similar manner to the one used in sections 3 and 4, and it leads to the
conclusion that the system undergoes the Kosterlitz–Thouless (KT) transition [38] into the
strong-coupling region forD > 0. This is consistent with the results of the bosonization
study starting from the three decoupledWZW models in section 3; the long-distance physics
of the ferromagnetic side is the same as that of theS = 1

2 XXZ chain and the exponents
depend onD; only the asymptotic form (D, −JK � 1) is known analytically:

ηz → π − cos−1(1/4)

π
≈ 0.58 ηxy = 1/ηz ≈ 1.72. (41)

Following the standard steps (see [51] for example), we obtain the correlation functions
in the intermediate-D region as (kF = π/(2a))

〈S+(x, t)S−(0, 0)〉 ∼ cos 2kFx

(x + ivFt)1/4R2
(x − ivFt)1/4R2 + (higher order)

〈Sz(x, t)Sz(0, 0)〉 ∼ cos 2kFx

(x + ivFt)R
2
(x − ivFt)R

2 + (higher order)
(42)

where the parameterR is a function ofJK andD. In particular, the correlation exponents
for D = 0 are constant independent ofJK and given byηaa = 1 (R = 1/

√
2).

From these results, the low-temperature asymptotics of the susceptibility is easily
calculated following theCFT-method [52]. Both forD = 0 and for D > 0, the
leading irrelevant operator allowed by theU(1)- and the translational symmetry would
be

pp cos 2
√

2φ̃
pp , which yields a logarithmic correction term to the low-temperature

asymptotics as

χaa(T ) ∼ 1

2πvF
+ 1

4πvF ln(T0/T )
(43)
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regardless of the sign ofJK. For D > 0, the logarithmic term is expected to be replaced
by a power-like oneT 8R2−4.

5. Variational calculation

In this section, we demonstrate the existence of other transitions than the usual dimerization
transition† atJ ′ = 1. The existence of these transitions for higher-S models was predicted by
Affleck and Haldane on the basis of the field-theoretical argument [18, 46]. They argued that
the 2top = π sigma model is realized several times as the strength of the bond alternation
is varied. ForS = 3

2 Heisenberg model, which is a special case of ours, second-order
transitions are predicted to occur three times; one is atJ ′ = 1 and the others are at non-
zeroJ ′.

A natural trial state for the intermediate regionJ ′
c < J ′ < 1 (D = 0) is given by a

product

|inhom-VBS〉 = Tr
(
gA

1 ⊗ gB
2 ⊗ gA

3 ⊗ . . . ⊗ gA
L−1 ⊗ gB

L

)
of the following matrices:

gA
i =

 −
{ | ↑↓↓〉 + | ↓↑↓〉

+| ↓↓↑〉
}

−√
2

{ | ↑↑↓〉 + | ↑↓↑〉
+| ↓↑↑〉

}
−3| ↑↑↑〉

3| ↓↓↓〉 √
2

{ | ↑↓↓〉 + | ↓↑↓〉
+| ↓↓↑〉

} { | ↑↑↓〉 + | ↑↓↑〉
+| ↓↑↑〉

}
 (44)

gB
j =



{ | ↓↑↑〉 + | ↑↓↑〉
+| ↑↑↓〉

}
3| ↑↑↑〉

−√
2

{ | ↑↓↓〉 + | ↓↑↓〉
+| ↓↓↑〉

}
−√

2

{ | ↓↑↑〉 + | ↑↓↑〉
+| ↑↑↓〉

}
3| ↓↓↓〉

{ | ↑↓↓〉 + | ↓↑↓〉
+| ↓↓↑〉

}
 (45)

where ket vectors| · · ·〉 stand for the states on a given rung. This is a ladder analogue
of the inhomogeneousVBS state [19, 53], where the valence-bond structure alternates as
· · · − = − = − = − · · ·, and expected to be suitable for the caseJK < 0.

On the other hand, we expect that the ‘dimer’ state, which is theexact ground state
whenJ ′ = 0, is a good approximant of the ground state for small enoughJ ′. Although the
derivation of the state by diagonalizing the six-site cluster is straightforward, the explicit
expression of it is lengthy and we do not write down it here. A variational phase-boundary is
determined by comparing the two values〈inhom-VBS|H|inhom-VBS〉 and〈dimer|H|dimer〉.
The calculation [54] is rather straightforward. The final result is given by

J ′
c(JK, D = 0) =

3
{
48+ 108J 2

K + (36JK + 5)

√
4 + 9J 2

K

}
50

√
4 + 9J 2

K

. (46)

This is shown in figure 4. In the limitJK → −∞, J ′
c approaches 0.3. According to a recent

numerical calculation for the alternatingS = 3
2 Heisenberg chain using the density-matrix

renormalization group (DMRG) [55], J ′
c is given by 0.41± 0.02 and our result of a simple

variational calculation underestimates the true value. Another transition line is obtained
using the symmetry(J ′, JK) → (1/J ′, JK/J ′).

The result is consistent with the argument of the previous sections. Just as in theS = 1
2

case, the critical phase of the homogeneous chain is located at the boundary of the two

† We mainly focus on the caseD = 0 here.
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Figure 4. Phase boundary obtained by a simple variational calculation in section 5. Above
it, a partially dimerized phase would be realized. Although the shape is quite reasonable, it
underestimates the true value.

non-translationally invariant phases; the above inhomogeneousVBS phase and the phase
obtained by translating it by one site.

Next we briefly consider the effect of theD-term. As described in section 2, the
effective Hamiltonian for large enoughD and JK is given by theS = 1

2 XXZ chain and
phases with partial dimerization are not allowed to exist there. Therefore, we expect that
the region of them gets smaller asD increases and finally squeezed out for vary large values
of D. However, the non-existence of the partially dimerized phases for smallJK, where
the strong-coupling (large-D) Hamiltonian takes a complicated form, is not conclusive and
deserves further investigation.

6. Summary and discussions

In the present paper, we have investigated the phase diagram of the three-leg ladder with
the single-ion anisotropy. The resulting phase diagram is shown in figure 5. It is rather
different from that of the two-leg ladder [13].

Instead of using the usual method [6] based on the Jordan–Wigner fermionization, we
started from the non-Abelian bosonization of a single Heisenberg chain. In this treatment,
the (S

α,z
i S

α,z
i+1)-interaction is fully taken into account and the starting point itself is already

non-trivial. Then the interchain interaction (and bond alternation) has been introduced as a
perturbation around the above fixed point.

Naive application of the perturbative renormalization group in section 3 showed that the
fixed point (JK, J ′, D) = (0, 0, 0) is unstable and the system flows to the strong-coupling
region. Therefore, it is preferable to use another description based on the total spin only,
i.e. (k = 3 WZW + W3 CFT)-description. In obtaining the decomposition, we adopted the
coset construction ofCFT. Then, we carried out the perturbativeRG for the spin sector and
obtained aRG-flow suggesting that three non-trivial fixed points appear; one corresponds
to a gapless line(JK < 0, J ′ = 1) and others to two dimerization-transition lines. On the
basis of the semiclassical analysis and another argument, we identified the universality class
of the above three fixed points (D = 0) with the level-1SU(2) WZW model. The spin-
correlation exponent is given byη = 1 along these lines. Three dimerization-transition lines
correspond to outgoing flows from the three non-trivial fixed points; the gap is expected
to open as1dimer ∼ |J ′ − J ′

c|2/3. A simple variational calculation suggests that partially
dimerized phases (P-Dim and P-Dim′) are realized in the regions between these lines.



3574 K Totsuka and M Suzuki

Figure 5. Conjectured phase diagram of our Hamiltonian (1). Shown are sections by (i)D = 0,
(ii) J ′ = 1, and (iii) JK = constant(< 0). The universality class of the level-1SU(2) WZW

model is realized in the regions depicted by ‘AF-JK’ and ‘L-1’ ∼ ‘L-3’. On ‘D-1’ ∼ ‘D-3’, the
system is Luttinger-liquid-like. A cross-over from ‘L-1’ to ‘D-1’ occurs forD > 0. P-Dim
(P-Dim′) and ‘Dim’ (‘Dim ′’) denote the partially dimerized and dimerized phase, respectively.

As the single-ion anisotropy increases from zero, the domain of the above intermediate
phases (P-Dim and P-Dim′) becomes smaller and smaller and finally disappears for very
large values ofD. On the boundaries of these phases (D-1∼ D-3), the c = 1 Gaussian
CFT is realized. The low-energy behaviour of the system is governed by a single parameter
R(JK, D) and the exponents depend onD. Asymptotically (D, −JK � 1), they are given
by

ηxy → π − cos−1(1/4)

π
and ηzz = 1/ηxy .

This is consistent with the rigorous statement that the system is gapless on theJ ′ = 1 plane.
In this respect, our phase diagram is different from the one obtained by Schulz [6].

As was seen in section 2, any transition at finite non-zeroD is excluded also in the
large-JK (JK � 1) region, where theD-term effectively becomes trivial. Combining this
with the RG-results, we expect that theD-term is irrelevant in thewhole AF-region (JK > 0,
shown asAF-JK); the low-energy behaviour is always described by the strong-coupling
(JK � 1) limit, or, theS = 1

2 Heisenberg model. Note, however, that our argument based
on the assumption that diverging flows in weak-coupling regions are smoothly connected
to those in strong-coupling regimes bears the risk of overlooking some novel intermediate
phases, since the region|JK | � 1 andD>∼1 of the present model is far from trivial.

The RG-analysis and the strong-coupling argument tell us that no partially dimerized
phase is realized in this region. That is, the fully-dimerized phases spread over except on
the J ′ = 1 plane. In this sense, the phase diagram for theAF-side is somewhat trivial. Of
course, the strong-coupling (JK � 1) limit of a cylindrical ladder is slightly complicated
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and hence ourRG results, which are derived for the cylindrical case, may be different from
what really happens for a planer ladder. However, the sigma-model mapping based on the
spin path-integral in section 4 also supports the above conclusions.

Finally, we comment on generic ladders. In principle, we can repeat the same procedure
for ladder models with more than three legs, although the calculation becomes harder and
harder. From the knowledge of the two- and three-leg ladder, we speculate that the system
is described by the strong-coupling picture even for smallJK. The phase diagram for the
AF-side is simple and essentially depends only on the parity ofnleg; the spin-gapped singlet
phase fornleg = even and the two dimerized phases separated by a single massless (thec = 1
Luttinger-liquid) plane fornleg = odd, on which the correlation exponents do not depend
on D. To some extent, this can be understood by repeating the semiclassical treatment
in section 4; the topological angle vanishes for integer-S, whereas it isalways given by
2top = 2πJ ′/(1 + J ′) for half-odd-integerS, as first emphasized by Khveshchenko [56].

The phase diagram for the ferromagnetic case becomes more complicated and richer
as nleg is increased. In a sense, this can be viewed as a consequence of the addition of
the Berry phases of the spins on each rung. That is, the topological angle for the spin-
S ferromagneticladder explicitly depends on the number of legs,nleg, and is given by
2top = 4πJ ′(nlegS)/(1 + J ′). This is in contrast with the case of antiferromagneticJK,
where the Berry phases tend to cancel each other. When the chain is uniform (J ′ = 1), it
satisfies2top = π(mod 2π) only for 2S = odd andnleg = odd. This is consistent with a
rigorous statement mentioned in section 1.

As first predicted by Affleck and Haldane on the basis of the field-theoretical argument,
we expect several intermediate phases in the region 0< J ′ < 1 (and also in the region
J ′ > 1). Moreover, we may consider the possibility of the intermediate-D phases. To
verify this, we have to wait further studies on this problem.
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Appendix A. Branching formulae

In this appendix, we derive the branching rules for the embedding

ŜU(2)1 × ŜU(2)1 × ŜU(2)1

ŜU(2)3

(A1)

in section 2. This kind of embedding is calleddiagonal in the literatures since subgroup
appearing in the denominator corresponds to the diagonal one of the numerator. The
diagonal subgroup is generated by the diagonal current

J
diag
L/R = J (1)

L/R + J (2)
L/R + J (3)

L/R (A2)

which corresponds to thetotal spinand satisfies the level-3SU(2) Kac–Moody algebra.
According to the general theory of the coset construction [39], the coset (G/H ) CFT is

governed by thecG/H = cG − cH Virasoro algebra generated by the operators

Kn = LG
n − LH

n (n ∈ Z) (A3)



3576 K Totsuka and M Suzuki

satisfying [Kn, L
H
m ] = 0. As usual, LG

n and LH
n are realized by the Sugawara

construction [35]. Correspondingly, we have character identities

χG,R(q) =
∑
R′

b(R, R′; q)χH,R′(q) (A4)

whereχG,R andb(R, R′) denote the character for the representationR of the algebrâG and
the branching function, respectively.

In our case, the central charge of the cosetCFT is given byc = 6
5 (cG = 3, cH = 9

5).
The finite-reducibility theorem [57] says that if the sum in (A4) is finite andcG/H > 1, then
we have to regard the branching functionb as the characters for a larger algebra than the
Virasoro algebra. Symmetry consideration suggests that this extended algebra is given by
theW3 algebra [40, 58] withZ3-symmetry (for a detailed account for theW -symmetry, see
[41] and references therein).

The W3 minimal CFT relevant for our purpose is also known to be given by the coset
construction [41]

ŜU(3)1 × ŜU(3)2

ŜU(3)3

.

The charactersχW3
h (q) = TrqL0(W3) are given in [42] for all 20 primary fields of thisCFT.

Among them, the following six ones are necessary:

χ
W3
0 (q) = 1 + q2 + 2q3 + 3q4 + 4q5 + 8q6 + 10q7 + 17q8 + 24q9 + · · ·

χ
W3
1/10(q) = q1/10 + 2q11/10 + 4q21/10 + 8q31/10 + 13q41/10 + 22q51/10 + 35q61/10 + · · ·

χ
W3
1/2(q) = q1/2 + 2q3/2 + 3q5/2 + 6q7/2 + 10q9/2 + 16q11/2 + 26q13/2 + · · ·

χ
W3
3/5(q) = χ

W3
3/5∗(q) = q3/5 + q8/5 + 2q13/5 + 3q18/5 + 6q23/5 + 9q28/5 + 15q33/5 + · · ·

χ
W3
8/5(q) = q8/5 + 2q13/5 + 3q18/5 + 6q23/5 + 9q28/5 + 14q33/5 + 22q38/5 + · · ·

and

χ
W3
2 (q) = χ

W3
2∗ (q) = q2 + q3 + 3q4 + 4q5 + 7q6 + 10q7 + 17q8 + 23q9 + · · · .

Using the above expressions and thêSU(2) affine characters for level-1 and 3, we can show
that the following identities hold for the embedding (A1)

χ
(1)

j=0χ
(1)

j=0χ
(1)

j=0 =
(
χ

W3
3/5 + χ

W3
3/5∗ + χ

W3
8/5

)
χ

(3)

j=1 +
(
χ

W3
0 + χ

W3
2 + χ

W3
2∗

)
χ

(3)

j=0 (A5)

χ
(1)

j=1/2χ
(1)

j=0χ
(1)

j=0 = χ
W3
1/10χ

(3)

j=1/2 + χ
W3
1/2χ

(3)

j=3/2 (A6)

χ
(1)

j=1/2χ
(1)

j=1/2χ
(1)

j=0 = χ
W3
1/10χ

(3)

j=1 + χ
W3
1/2χ

(3)

j=0 (A7)

χ
(1)

j=1/2χ
(1)

j=1/2χ
(1)

j=1/2 =
(
χ

W3
3/5 + χ

W3
3/5∗ + χ

W3
8/5

)
χ

(3)

j=1/2 +
(
χ

W3
0 + χ

W3
2 + χ

W3
2∗

)
χ

(3)

j=3/2 (A8)

whereχ
(k)
j denotes the character for the spin-j representation of the level-k ŜU(2). Two

primary fields(φh=2, φh=2∗) (and(φh=3/5, φh=3/5∗)) are mutually conjugateZ3-neutral fields.
The second and third lines were already given in section 2 in order to rewrite the interactions.

The branching functions (q = e2π iτ )

χ1(τ ) ≡ χ
W3
0 + χ

W3
2 + χ

W3
2∗ χ2(τ ) ≡ χ

W3
1/10

χ3(τ ) ≡ χ
W3
1/2 χ4(τ ) ≡ χ

W3
3/5 + χ

W3
3/5∗ + χ

W3
8/5
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appearing in (A5)–(A8) transform as follows:

χ1(−1/τ) = c1χ1(τ ) + 3c2χ2(τ ) + 3c1χ3(τ ) + c2χ4(τ )

χ2(−1/τ) = c2χ1(τ ) + c1χ2(τ ) − c2χ3(τ ) − c1χ4(τ )

χ3(−1/τ) = c1χ1(τ ) − c2χ2(τ ) − c1χ3(τ ) + c2χ4(τ )

χ4(−1/τ) = c2χ1(τ ) − 3c1χ2(τ ) + 3c2χ3(τ ) − c1χ4(τ )

(A9)

where the constantsc1 andc2 are given by

c1 ≡
√

5 sin(π/5)

2(2 + cos(π/5) − cos(2π/5))
c2 ≡

√
5 sin(2π/5)

2(2 + cos(π/5) − cos(2π/5))

and satisfy 4(c2
1+c2

2) = 1. From these relations, it is easy to verify that the above branching
functions are building blocks of the following modular-invariant partition function:

Z(τ) = ∣∣χW3
0 + χ

W3
2 + χ

W3
2∗

∣∣2 + 3
∣∣χW3

1/10

∣∣2 + 3
∣∣χW3

1/2

∣∣2 + ∣∣χW3
3/5 + χ

W3
3/5∗ + χ

W3
8/5

∣∣2

= |χ1|2 + 3|χ2|2 + 3|χ3|2 + |χ4|2 . (A10)

The fusion rule algebra [59] is closely related to the operator-product expansion (OPE)
and gives information about which fields appear in theOPE. The fusion-rule coefficientsNk

ij

are conveniently derived from the so-called modularS-matrix with the help of the Verlinde
formula [60]. Using the modularS-matrix calculated in [42] (equation (4.2.3)), we obtain
the following fusion rules for the charge-neutral fields

[φh=1/2] × [φh=1/2] = [1] + 2[φh=1/2] + [φh=2] + [φh=2∗ ]

[φh=1/10] × [φh=1/10] = [1] + 2[φh=1/10] + 2[φh=1/2] + [φh=8/5]

+[φh=2] + [φh=2∗ ] + [φh=3/5] + [φh=3/5∗ ]

[φh=1/10] × [φh=1/2] = 2[φh=1/10] + [φh=8/5] + [φ3/5] + [φh=3/5∗ ]

[φh=1/2] × [φh=8/5] = [φh=1/10]

[φh=1/10] × [φh=8/5] = [φh=1/10] + [φh=1/2]

[φh=8/5] × [φh=8/5] = [1] + [φh=8/5]

[φh=2] × [φh=2] = [φh=2∗ ]

[φh=2] × [φh=2∗ ] = [1]

[φh=2] × [φh=3/5] = [φh=3/5∗ ] [φh=2] × [φh=3/5∗ ] = [φh=3/5]

[φh=2] × [φh=8/5] = [φh=3/5]

[φh=2] × [φh=1/10] = [φh=1/10] [φh=2∗ ] × [φh=1/10] = [φh=1/10]

[φh=2] × [φh=1/2] = [φh=1/2] [φh=2∗ ] × [φh=1/2] = [φh=1/2]

[φh=3/5] × [φh=3/5] = [φh=3/5∗ ]

[φh=3/5] × [φh=3/5∗ ] = [1] + [φh=8/5]

[φh=1/2] × [φh=3/5] = [φh=1/10]

[φh=1/2] × [φh=3/5∗ ] = [φh=1/10]

[φh=1/10] × [φ3/5] = [φ1/2] + [φ1/10]

[φh=1/10] × [φ3/5∗ ] = [φ1/2] + [φ1/10] etc.

Note that the above rules are (as they should be) consistent with theZ3-symmetry
underlying thisCFT.
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The above fusion rules and modular invariant (A10) suggest that the order 3 simple
currentsφh=2 andφh=2∗ act on tripletsφh=1/10 = (φ

(1)

h=1/10, φ
(2)

h=1/10, φ
(3)

h=1/10) andφh=1/2 =
(φ

(1)

h=1/2, φ
(2)

h=1/2, φ
(3)

h=1/2) asZ3 operators. That is, the followingOPEshold:

φh=2(z)φh(w) = 1

(z − w)2

( 0 1 0
0 0 1
1 0 0

)
φh(w) + (· · ·)

φh=2∗(z)φh(w) = 1

(z − w)2

( 0 0 1
1 0 0
0 1 0

)
φh(w) + (· · ·)

whereh = 1
10 or 1

2. They corresponds to the followingZ3-operations for theg1,2,3-fields:

φh=2 : gi 7→ gi+1 φh=2∗ : gi 7→ gi−1 .

On the other hand, two extended fields1̃ and φ̃h = 3
5 behave like

φh=2(z)̃1 ∼ 0 φh=2(z)φ̃h=3/5(w) ∼ 1

(z − w)2
φ̃h=3/5(w) + (· · ·) .

The ‘extended’ modularS-matrix compatible with this observation does exist; the new
fusion rules are much simpler than those listed in the above:

[φ(1)

h=1/10] × [φ(1)

h=1/10] = [̃1] + [φ̃h=3/5]

[φ(1)

h=1/10] × [φ(2)

h=1/10] = [φ(3)

h=1/10] + [φ(3)

h=1/2] (cyclic perm)

[φ(1)

h=1/10] × [φ(1)

h=1/2] = [φ̃h=3/5]

[φ(1)

h=1/10] × [φ(2)

h=1/2] = [φ(3)

h=1/10] [φ(1)

h=1/10] × [φ(3)

h=1/2] = [φ(2)

h=1/10] (cyclic perm)

[φ(1)

h=1/2] × [φ(1)

h=1/2] = [̃1]

[φ(1)

h=1/2] × [φ(2)

h=1/2] = [φ(3)

h=1/2]

[φ(1)

h=1/2] × [φ̃h=3/5] = [φ(1)

h=1/10]

[φ̃h=3/5] × [φ̃h=3/5] = [̃1] .

We have used symbols [1̃] and [φ̃h=3/5] in the extended sense.
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